In-hadron gluon condensate and AdS/LFQCD holography

Stanisław D. Głazek
Institute of Theoretical Physics, Department of Physics, University of Warsaw

A few arguments are put up for a discussion concerning the hope that a systematic application of the renormalization group procedure for effective particles to QCD in the front form of relativistic Hamiltonian dynamics will yield a precise picture of hadrons in which:

1) effective quarks are bound by gluons condensed inside hadrons
2) in agreement with the expectations suggested by the parton model,
3) QCD sum rules,
4) models based on AdS/QCD duality in terms of LF QCD holography, and
5) the constituent quark model of hadrons.
S. D. Głazek, Acta Phys. Pol. B 42, 1933-2010 (2011); Few Body Syst. 52, 367-373 (2012).

Goal: QCD for hadrons with quality of QED for atoms

$$
\begin{aligned}
& \mathcal{L}_{Q C D} \rightarrow \mathcal{H}_{Q C D} \\
& H_{Q C D}=\int d^{3} x \mathcal{H}_{Q C D} \\
& H_{Q C D}|\psi\rangle=E|\psi\rangle \\
&|h a d r o n\rangle=|\psi\rangle
\end{aligned}
$$

The RGPEP idea of scale dependence (line = color-transport factor) Analogy with swarms of colored bees

Renormalization Group Procedure for Effective Particles (RGPEP)

 canonical front form of Hamiltonian dynamics$$
t=0 \rightarrow x^{+}=0
$$

$$
\begin{aligned}
\psi(x) & =\int[p] q_{0 p} e^{-i p x} \\
\psi_{s}(x) & =\int[p] q_{s p} e^{-i p x} \\
s & =\text { size of effective quark } \\
\psi_{s} & =U_{s} \psi_{0} U_{s}^{\dagger}
\end{aligned}
$$

$$
\text { renormalized (effective) theory } \quad \psi_{s}(x)=\int[p] q_{s p} e^{-i p x}
$$

5th dimension in AdS/QCD

$$
\psi_{s}(x)=\psi(x, s)
$$

$$
\begin{array}{rlrl}
\psi_{s} & =U_{s} \psi_{0} U_{s}^{\dagger} & t=s^{4} \quad q_{s} \equiv q_{t} \quad H \equiv P^{-} \\
H_{t}\left(q_{t}\right) & =H_{0}\left(q_{0}\right) & \\
H_{t}\left(q_{0}\right) & =U_{t}^{\dagger} H_{0}\left(q_{0}\right) U_{t} & \frac{d}{d t} \quad \rightarrow \quad ' \\
H_{t}^{\prime}\left(q_{0}\right) & =\left[G_{t}\left(q_{0}\right), H_{t}\left(q_{0}\right)\right] \\
G_{t} & =-U_{t}^{\dagger} U_{t}^{\prime} & U_{t}=T \exp \left(-\int_{0}^{t} d \tau G_{\tau}\right) \\
G_{t} & =\left[H_{f}, H_{P t}\right]=\text { generator of } \mathrm{RGPEP}
\end{array}
$$

$$
\begin{aligned}
G_{t} & =\left[H_{f}, H_{P t}\right] \\
H_{f} & =\sum_{i} p_{i}^{-} q_{0 i}^{\dagger} q_{0 i} \quad p_{i}^{-}=\frac{p_{i}^{\perp 2}+m_{i}^{2}}{p_{i}^{+}} \\
H_{t}\left(q_{0}\right) & =\sum_{n=2}^{\infty} \sum_{i_{1}, i_{2}, \ldots, i_{n}} c_{t}\left(i_{1}, \ldots, i_{n}\right) q_{0 i_{1}}^{\dagger} \cdots q_{0 i_{n}} \\
H_{P t}\left(q_{0}\right) & =\sum_{n=2}^{\infty} \sum_{i_{1}, i_{2}, \ldots, i_{n}} c_{t}\left(i_{1}, \ldots, i_{n}\right)\left(\frac{1}{2} \sum_{k=1}^{n} p_{i_{k}}^{+}\right)^{2} q_{0 i_{1}}^{\dagger} \cdots q_{0 i_{n}} \\
\left(\sum_{m n}\left|H_{I m n}\right|^{2}\right)^{\prime} & =-2 \sum_{k m}\left(\mathcal{M}_{k m}^{2}-\mathcal{M}_{m k}^{2}\right)^{2}\left|H_{I k m}\right|^{2} \leq 0
\end{aligned}
$$

Theory $V=\delta, 6$-dim ϕ^{3}, AF in QCD, limit cycles + Phen. $\Upsilon, J / \psi$

Front form $\rightarrow \mathbf{7}$ kinematical symmetries including boosts

$$
\text { IMF } \leftrightarrow \text { CMS }
$$

$$
\begin{aligned}
p^{+} & >0 \\
|\Omega\rangle & =|0\rangle \\
\varphi^{2} & =\langle\Omega| \frac{\alpha_{s}}{\pi} G^{2}|\Omega\rangle=?
\end{aligned}
$$

Cosmology?

Constituent Quark Model hypothesis in QCD

$$
\begin{array}{ll}
s_{c} \sim 1 / \Lambda_{Q C D} & \\
|M\rangle_{s_{c}}=\sum_{12} \psi_{s_{c}}(12)|12\rangle_{s_{c}} & |B\rangle_{s_{c}}=\sum_{123} \psi_{s_{c}}(123)|123\rangle_{s_{c}} \\
s \lesssim s_{c} & W_{s s_{c}}=U_{s_{c}} U_{s}^{\dagger} \\
W_{s s_{c}}|12\rangle_{s_{c}}=|12 G\rangle_{s} & W_{s s_{c}}|123\rangle_{s_{c}}=|123 G\rangle_{s} \\
|M\rangle_{s}=\sum_{12 G} \psi_{s}(12 G)|12 G\rangle_{s} & |B\rangle_{s}=\sum_{123 G} \psi_{s}(123 G)|123 G\rangle_{s}
\end{array}
$$

Effective eigenvalue problem $\quad H_{s}|\psi\rangle=E|\psi\rangle$

$$
\begin{aligned}
{ }_{s}\langle 12 G| H_{s}|M\rangle_{s} & =E_{M} \psi_{s}(12 G) \\
{ }_{s}\langle 123 G| H_{s}|B\rangle_{s} & =E_{B} \psi_{s}(123 G)
\end{aligned}
$$

$H_{s}=\frac{\mathcal{M}^{2}+P^{\perp 2}}{P^{+}} \quad$ gauge symmetry $\quad-i \vec{\nabla} \rightarrow-i \vec{\nabla}-g_{s} \vec{A}$

1) the Schwinger gauge $A^{\mu}=\frac{1}{2}\left(x-x_{G}\right)_{\nu} G^{\nu \mu}+\ldots$
2) color-transport factors $\quad T_{i}=e^{-i g \int_{\underline{\underline{x}}}^{x_{i}} d x_{\mu} A^{\mu}}$
3) crude mean field approximation (Abelian) Glazek-Schaden 1987

$$
\langle G| g_{s}^{2} \vec{A}^{2}(\vec{x})|G\rangle \sim \frac{1}{4}\langle G| g_{s}^{2} G^{\mu \nu 2}|G\rangle\left(\vec{x}-\vec{x}_{G}\right)^{2} \quad \rightarrow \quad \varphi^{2}\left(\vec{x}-\vec{x}_{G}\right)^{2}
$$

gauge symmetry restores translational symmetry $\rightarrow \vec{x}_{G}$ drops out

Front form mesons

$$
\begin{gathered}
\mathcal{M}_{q \bar{q}}^{2}=4 m^{2}+4\left[\vec{k}^{2}+\frac{1}{2} m^{2}\left(\frac{\pi \varphi}{3 m}\right)^{2} \frac{1}{2}\left(i \frac{\partial}{\partial \vec{k}}\right)^{2}\right] \\
k^{\perp}=\frac{\kappa^{\perp}}{2 \sqrt{x(1-x)}} \\
k^{z}=\frac{2 x-1}{2 \sqrt{x(1-x)}} m \\
P=p_{1}+p_{2}, \quad x=p_{1}^{+} / P^{+} \\
p_{1}^{\perp}=x P^{\perp}+\kappa^{\perp}, \quad p_{2}^{\perp}=(1-x) P^{\perp}-\kappa^{\perp}
\end{gathered}
$$

Front form baryons

$$
\begin{aligned}
& \mathcal{M}_{3 q}^{2}=9 m^{2}+6 \vec{K}^{2}+\frac{9}{2} \vec{Q}^{2}-3 m^{2}\left(\frac{\pi \varphi}{3 m}\right)^{2} \frac{5}{8}\left(\Delta_{K}^{2} / 2+2 \Delta_{Q} / 3\right) \\
& x_{i}=p_{i}^{+} / P^{+}, \quad p_{3}^{\perp}=x_{3} P^{\perp}+q^{\perp}, \\
& p_{2}^{\perp}=x_{2} P^{\perp}-\frac{x_{2}}{1-x_{3}} q^{\perp}-\kappa^{\perp}, \quad p_{1}^{\perp}=x_{1} P^{\perp}-\frac{x_{1}}{1-x_{3}} q^{\perp}+\kappa^{\perp} \\
& Q^{\perp}=\sqrt{\frac{2}{9 x_{3}\left(1-x_{3}\right)}} q^{\perp}, \quad Q^{z}=\sqrt{\frac{2}{9 x_{3}\left(1-x_{3}\right)}}\left(2 x_{3}-x_{1}-x_{2}\right) m \\
& K^{\perp}=\sqrt{\frac{1-x_{3}}{6 x_{1} x_{2}}} \kappa^{\perp}, \quad K^{z}=\sqrt{\frac{1-x_{3}}{6 x_{1} x_{2}} \frac{x_{1}-x_{2}}{1-x_{3}} m}
\end{aligned}
$$

Right values for CQM

$$
\begin{gathered}
\omega_{M}=\frac{\pi \varphi}{3 m}, \quad \omega_{B}=\sqrt{\frac{5}{8}} \omega_{M} \\
\varphi_{\text {vacuum }}^{2}=\langle\Omega|\left(\alpha_{s} / \pi\right) G^{\mu \nu c} G_{\mu \nu}^{c}|\Omega\rangle \leftrightarrow \varphi^{2}=\frac{\langle G|\left(\alpha_{s} / \pi\right) G^{\mu \nu c} G_{\mu \nu}^{c}|G\rangle}{\langle G \mid G\rangle}
\end{gathered}
$$

Front form wave functions for constituent quarks

$$
\psi_{q H}=N \exp \left\{-\frac{1}{2 n_{H} m \omega_{H}}\left[\left(\sum_{i=1}^{n_{H}} p_{i}\right)^{2}-\left(n_{H} m\right)^{2}\right]\right\}
$$

$s \sim 1 / \Lambda_{Q C D} \quad, \quad n_{M}=2, \quad n_{B}=3$

Hadron form factors at small Q^{2}

$F_{\text {hadron }}\left(Q^{2}\right) \sim e^{\frac{1-\left\langle x_{q}\right\rangle}{\left\langle x_{q}\right\rangle} Q^{2} /\left(2 n_{H} m \omega_{H}\right)} \quad F_{3 q}\left(Q^{2}\right) \quad$ phenomenology?

Hadron structure functions

$W_{Q \lambda} \leftrightarrow D G L A P$
phenomenology?

Comment on AdS/QCD

right variable for Brodsky-Teramond holography $\quad k^{\perp}=\frac{\kappa^{\perp}}{2 \sqrt{x(1-x)}}$ Hypotheses:

1) AdS 5th dimension \leftrightarrow quark size s in RGPEP
2) G-induced oscillator \leftrightarrow soft wall models in IR
3) $\kappa_{S W}^{2}=2 m \omega_{M}=\frac{2 \pi}{3} \varphi_{\text {glue }}$
4) AdS/QCD phenomenology $\frac{\kappa_{M}}{\kappa_{B}} \sim 1.15 \pm 0.5$ and $\left(\frac{8}{5}\right)^{1 / 4} \sim 1.125$

Conclusion

- Reinterpretation of the gluon condensate
- Constituent phenomenology including the glue component
- Non-perturbative RGPEP method for inspection of QCD
- Boosts and rotations in spectrum: new variables $\vec{k}, \vec{K}, \vec{Q}$
- Relativistic oscillator (CMS, IMF) and $M^{2} \sim r^{2} \leftrightarrow M \sim r$
- LF holography and SW AdS model via RGPEP scale parameter (?)

SRG procedure:

No small denominators in perturbation theory for H_{λ} No explicit dependence of H_{λ} on the eigenvalues, E

Eigenvalues E appear on the diagonal when $\lambda \rightarrow 0$

Fock space convergence?

$$
\left[H^{R}+C T^{R}\right]\left(q_{0}\right)=\sum_{I} c_{0 I} \prod_{i \in I} q_{0 i}
$$

RGPEP form factors $H_{s}\left(q_{s}\right)=\sum_{I} f_{s} c_{s I} \prod_{i \in I} q_{s i}$

$$
U_{s} q_{0} U_{s}^{\dagger}=q_{s}
$$

quantum fields $\quad \psi\left(q_{0}\right), A\left(q_{0}\right) \quad \rightarrow \quad \psi\left(q_{s}\right), A\left(q_{s}\right)$

$$
\begin{aligned}
|h\rangle=\sum_{I} \phi_{h 0}(I) \prod_{i \in I} q_{0 i}^{\dagger}|0\rangle & \rightarrow|h\rangle=\sum_{I} \phi_{h s}(I) \prod_{i \in I} q_{s i}^{\dagger}|0\rangle \\
U_{s_{1}}, \quad U_{s_{2}}, \quad W_{s_{2} s_{1}} & =U_{s_{2}} U_{s_{1}}^{\dagger} \\
q_{s_{2}} & =W_{s_{2} s_{1}} q_{s_{1}} W_{s_{2} s_{1}}^{\dagger}
\end{aligned}
$$

equations for scale-evolution in s

Time-honored problem:

$$
\begin{array}{rlll}
H & & \rightarrow & \\
H^{\Delta}+C T^{\Delta} & \rightarrow & R G & \rightarrow
\end{array} H_{\lambda} . C T^{\Delta}
$$

History:

RG \rightarrow SRG \rightarrow RGPEP $\rightarrow \quad$ PT + NPT

Wilson 1964

